
<< Prev Beej's Guide to Network Programming Next >>

8. Common Questions

Where can I get those header files?

If you don't have them on your system already, you probably don't need them. Check the
manual for your particular platform. If you're building for Windows, you only need to
#include <winsock.h>.

What do I do when bind() reports "Address already in use"?

You have to use setsockopt() with the SO_REUSEADDR option on the listening socket.
Check out the section on bind() and the section on select() for an example.

How do I get a list of open sockets on the system?

Use the netstat. Check the man page for full details, but you should get some good output
just typing:

$ netstat

The only trick is determining which socket is associated with which program. :-)

How can I view the routing table?

Run the route command (in /sbin on most Linuxes) or the command netstat -r.

How can I run the client and server programs if I only have one computer? Don't I need a
network to write network programs?

Fortunately for you, virtually all machines implement a loopback network "device" that sits
in the kernel and pretends to be a network card. (This is the interface listed as "lo" in the
routing table.)

Pretend you're logged into a machine named "goat". Run the client in one window and the
server in another. Or start the server in the background ("server &") and run the client in
the same window. The upshot of the loopback device is that you can either client goat or
client localhost (since "localhost" is likely defined in your /etc/hosts file) and
you'll have the client talking to the server without a network!

In short, no changes are necessary to any of the code to make it run on a single
non-networked machine! Huzzah!

How can I tell if the remote side has closed connection?

You can tell because recv() will return 0.

Common Questions http://beej.us/guide/bgnet/output/html/multipage/faq.html

1 of 7 02/09/2013 04:25 PM



How do I implement a "ping" utility? What is ICMP? Where can I find out more about
raw sockets and SOCK_RAW?

All your raw sockets questions will be answered in W. Richard Stevens' UNIX Network
Programming books. Also, look in the ping/ subdirectory in Stevens' UNIX Network
Programming source code, available online.

How do I change or shorten the timeout on a call to connect()?

Instead of giving you exactly the same answer that W. Richard Stevens would give you, I'll
just refer you to lib/connect_nonb.c in the UNIX Network Programming source code.

The gist of it is that you make a socket descriptor with socket(), set it to non-blocking,
call connect(), and if all goes well connect() will return -1 immediately and errno
will be set to EINPROGRESS. Then you call select() with whatever timeout you want,
passing the socket descriptor in both the read and write sets. If it doesn't timeout, it means
the connect() call completed. At this point, you'll have to use getsockopt() with the
SO_ERROR option to get the return value from the connect() call, which should be zero if
there was no error.

Finally, you'll probably want to set the socket back to be blocking again before you start
transferring data over it.

Notice that this has the added benefit of allowing your program to do something else while
it's connecting, too. You could, for example, set the timeout to something low, like 500 ms,
and update an indicator onscreen each timeout, then call select() again. When you've
called select() and timed-out, say, 20 times, you'll know it's time to give up on the
connection.

Like I said, check out Stevens' source for a perfectly excellent example.

How do I build for Windows?

First, delete Windows and install Linux or BSD. };-). No, actually, just see the section on
building for Windows in the introduction.

How do I build for Solaris/SunOS? I keep getting linker errors when I try to compile!

The linker errors happen because Sun boxes don't automatically compile in the socket
libraries. See the section on building for Solaris/SunOS in the introduction for an example
of how to do this.

Why does select() keep falling out on a signal?

Signals tend to cause blocked system calls to return -1 with errno set to EINTR. When
you set up a signal handler with sigaction(), you can set the flag SA_RESTART, which
is supposed to restart the system call after it was interrupted.

Naturally, this doesn't always work.

My favorite solution to this involves a goto statement. You know this irritates your
professors to no end, so go for it!

Common Questions http://beej.us/guide/bgnet/output/html/multipage/faq.html

2 of 7 02/09/2013 04:25 PM



select_restart:
if ((err = select(fdmax+1, &readfds, NULL, NULL, NULL)) == -1) {
    if (errno == EINTR) {
        // some signal just interrupted us, so restart
        goto select_restart;
    }
    // handle the real error here:
    perror("select");
} 

Sure, you don't need to use goto in this case; you can use other structures to control it. But
I think the goto statement is actually cleaner.

How can I implement a timeout on a call to recv()?

Use select()! It allows you to specify a timeout parameter for socket descriptors that
you're looking to read from. Or, you could wrap the entire functionality in a single
function, like this:

#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>

int recvtimeout(int s, char *buf, int len, int timeout)
{
    fd_set fds;
    int n;
    struct timeval tv;

    // set up the file descriptor set
    FD_ZERO(&fds);
    FD_SET(s, &fds);

    // set up the struct timeval for the timeout
    tv.tv_sec = timeout;
    tv.tv_usec = 0;

    // wait until timeout or data received
    n = select(s+1, &fds, NULL, NULL, &tv);
    if (n == 0) return -2; // timeout!
    if (n == -1) return -1; // error

    // data must be here, so do a normal recv()
    return recv(s, buf, len, 0);
}
.
.
.
// Sample call to recvtimeout():
n = recvtimeout(s, buf, sizeof buf, 10); // 10 second timeout

if (n == -1) {
    // error occurred
    perror("recvtimeout");
}
else if (n == -2) {
    // timeout occurred
} else {
    // got some data in buf
}
.

Common Questions http://beej.us/guide/bgnet/output/html/multipage/faq.html

3 of 7 02/09/2013 04:25 PM



.

. 

Notice that recvtimeout() returns -2 in case of a timeout. Why not return 0? Well, if
you recall, a return value of 0 on a call to recv() means that the remote side closed the
connection. So that return value is already spoken for, and -1 means "error", so I chose -2
as my timeout indicator.

How do I encrypt or compress the data before sending it through the socket?

One easy way to do encryption is to use SSL (secure sockets layer), but that's beyond the
scope of this guide. (Check out the OpenSSL project for more info.)

But assuming you want to plug in or implement your own compressor or encryption
system, it's just a matter of thinking of your data as running through a sequence of steps
between both ends. Each step changes the data in some way.

server reads data from file (or wherever)1.
server encrypts/compresses data (you add this part)2.
server send()s encrypted data3.

Now the other way around:

client recv()s encrypted data1.
client decrypts/decompresses data (you add this part)2.
client writes data to file (or wherever)3.

If you're going to compress and encrypt, just remember to compress first. :-)

Just as long as the client properly undoes what the server does, the data will be fine in the
end no matter how many intermediate steps you add.

So all you need to do to use my code is to find the place between where the data is read and
the data is sent (using send()) over the network, and stick some code in there that does
the encryption.

What is this "PF_INET" I keep seeing? Is it related to AF_INET?

Yes, yes it is. See the section on socket() for details.

How can I write a server that accepts shell commands from a client and executes them?

For simplicity, lets say the client connect()s, send()s, and close()s the connection
(that is, there are no subsequent system calls without the client connecting again.)

The process the client follows is this:

connect() to server1.
send("/sbin/ls > /tmp/client.out")2.
close() the connection3.

Meanwhile, the server is handling the data and executing it:

Common Questions http://beej.us/guide/bgnet/output/html/multipage/faq.html

4 of 7 02/09/2013 04:25 PM



accept() the connection from the client1.
recv(str) the command string2.
close() the connection3.
system(str) to run the command4.

Beware! Having the server execute what the client says is like giving remote shell access
and people can do things to your account when they connect to the server. For instance, in
the above example, what if the client sends "rm -rf ~"? It deletes everything in your
account, that's what!

So you get wise, and you prevent the client from using any except for a couple utilities that
you know are safe, like the foobar utility:

if (!strncmp(str, "foobar", 6)) {
    sprintf(sysstr, "%s > /tmp/server.out", str);
    system(sysstr);
} 

But you're still unsafe, unfortunately: what if the client enters "foobar; rm -rf ~"? The
safest thing to do is to write a little routine that puts an escape ("\") character in front of all
non-alphanumeric characters (including spaces, if appropriate) in the arguments for the
command.

As you can see, security is a pretty big issue when the server starts executing things the
client sends.

I'm sending a slew of data, but when I recv(), it only receives 536 bytes or 1460 bytes at a
time. But if I run it on my local machine, it receives all the data at the same time. What's
going on?

You're hitting the MTU—the maximum size the physical medium can handle. On the local
machine, you're using the loopback device which can handle 8K or more no problem. But
on Ethernet, which can only handle 1500 bytes with a header, you hit that limit. Over a
modem, with 576 MTU (again, with header), you hit the even lower limit.

You have to make sure all the data is being sent, first of all. (See the sendall() function
implementation for details.) Once you're sure of that, then you need to call recv() in a
loop until all your data is read.

Read the section Son of Data Encapsulation for details on receiving complete packets of
data using multiple calls to recv().

I'm on a Windows box and I don't have the fork() system call or any kind of
struct sigaction. What to do?

If they're anywhere, they'll be in POSIX libraries that may have shipped with your
compiler. Since I don't have a Windows box, I really can't tell you the answer, but I seem to
remember that Microsoft has a POSIX compatibility layer and that's where fork() would
be. (And maybe even sigaction.)

Search the help that came with VC++ for "fork" or "POSIX" and see if it gives you any
clues.

Common Questions http://beej.us/guide/bgnet/output/html/multipage/faq.html

5 of 7 02/09/2013 04:25 PM



If that doesn't work at all, ditch the fork()/sigaction stuff and replace it with the
Win32 equivalent: CreateProcess(). I don't know how to use CreateProcess()—it
takes a bazillion arguments, but it should be covered in the docs that came with VC++.

I'm behind a firewall—how do I let people outside the firewall know my IP address so they
can connect to my machine?

Unfortunately, the purpose of a firewall is to prevent people outside the firewall from
connecting to machines inside the firewall, so allowing them to do so is basically
considered a breach of security.

This isn't to say that all is lost. For one thing, you can still often connect() through the
firewall if it's doing some kind of masquerading or NAT or something like that. Just design
your programs so that you're always the one initiating the connection, and you'll be fine.

If that's not satisfactory, you can ask your sysadmins to poke a hole in the firewall so that
people can connect to you. The firewall can forward to you either through it's NAT
software, or through a proxy or something like that.

Be aware that a hole in the firewall is nothing to be taken lightly. You have to make sure
you don't give bad people access to the internal network; if you're a beginner, it's a lot
harder to make software secure than you might imagine.

Don't make your sysadmin mad at me. ;-)

How do I write a packet sniffer? How do I put my Ethernet interface into promiscuous
mode?

For those not in the know, when a network card is in "promiscuous mode", it will forward
ALL packets to the operating system, not just those that were addressed to this particular
machine. (We're talking Ethernet-layer addresses here, not IP addresses--but since ethernet
is lower-layer than IP, all IP addresses are effectively forwarded as well. See the section
Low Level Nonsense and Network Theory for more info.)

This is the basis for how a packet sniffer works. It puts the interface into promiscuous
mode, then the OS gets every single packet that goes by on the wire. You'll have a socket
of some type that you can read this data from.

Unfortunately, the answer to the question varies depending on the platform, but if you
Google for, for instance, "windows promiscuous ioctl" you'll probably get somewhere.
There's what looks like a decent writeup in Linux Journal, as well.

How can I set a custom timeout value for a TCP or UDP socket?

It depends on your system. You might search the net for SO_RCVTIMEO and SO_SNDTIMEO
(for use with setsockopt()) to see if your system supports such functionality.

The Linux man page suggests using alarm() or setitimer() as a substitute.

How can I tell which ports are available to use? Is there a list of "official" port numbers?

Usually this isn't an issue. If you're writing, say, a web server, then it's a good idea to use
the well-known port 80 for your software. If you're writing just your own specialized

Common Questions http://beej.us/guide/bgnet/output/html/multipage/faq.html

6 of 7 02/09/2013 04:25 PM



server, then choose a port at random (but greater than 1023) and give it a try.

If the port is already in use, you'll get an "Address already in use" error when you try to
bind(). Choose another port. (It's a good idea to allow the user of your software to specify
an alternate port either with a config file or a command line switch.)

There is a list of official port numbers maintained by the Internet Assigned Numbers
Authority (IANA). Just because something (over 1023) is in that list doesn't mean you can't
use the port. For instance, Id Software's DOOM uses the same port as "mdqs", whatever
that is. All that matters is that no one else on the same machine is using that port when you
want to use it.

<< Prev Beej's Guide to Network Programming Next >>

Common Questions http://beej.us/guide/bgnet/output/html/multipage/faq.html

7 of 7 02/09/2013 04:25 PM


